THE RELATIONSHIP BETWEEN HIGH GLYCEMIC INDEX DIET AND MUSCULOSKELETAL DISORDERS
Main Article Content
Musculoskeletal disorders include acute and chronic conditions affecting the muscles, bones, joints, and supporting structures in the neck, back, and limbs, posing significant challenges across all age groups. Approximately 30% of cases occur in adolescents and individuals in their productive years, not just in the elderly. These disorders lead to substantial socioeconomic and health burdens. Previous research indicates that dietary patterns play a critical role in the onset and progression of these conditions. A persistent high-glycemic index (GI) diet is associated with systemic inflammation, metabolic dysregulation, and musculoskeletal health. This study aims to provide a comprehensive review of existing literature to summarize and identify the potential relationship between high-GI diets and the prevalence of musculoskeletal disorders (MSDs). Articles were collected using search engines such as PubMed, Medscape, and ScienceDirect, focusing on publications from 2013 to 2024. The findings emphasize the importance of dietary interventions as modifiable risk factors for preventing and managing musculoskeletal disorders, particularly in at-risk populations. Further studies are needed to develop dietary strategies to reduce the global burden of musculoskeletal disorders effectively.
2. Towery P, Guffey JS, Doerflein C, Stroup K, Saucedo S, Taylor J. Chronic musculoskeletal pain and function improve with a plant-based diet. Complement Ther Med. 2018;40(June):64–9.
3. Adinda; Legiran; Arwan Bin Laeto. Diet Indeks dan Beban Glikemik Tinggi serta Resiko Terhadap Gangguan Muskuloskeletal. Plex Med Journal, [Internet]. 2024;3(4):146–53. Available from: https://doi.org/10.20961/plexus.v3i4.1814
4. Norwitz NG, Sethi S, Palmer CM. Ketogenic diet as a metabolic treatment for mental illness. Curr Opin Endocrinol Diabetes Obes. 2020;27(5):269–74.
5. Flynn DM. Chronic Musculoskeletal Pain: Nonpharmacologic, Noninvasive Treatments. Am Fam Physician. 2020;102(8):465–77.
6. Krishnan KS, Raju G, Shawkataly O. Prevalence of work-related musculoskeletal disorders: Psychological and physical risk factors. Int J Environ Res Public Health. 2021;18(17).
7. Borenstein DG BF. Low Back Pain in Adolescent and Geriatric Populations. Rheum Dis Clin North Am. 2021;(2):149–63.
8. EU-OSHA. Musculoskeletal disorders among children and young people: prevalence, risk factors, preventive measures. 2021; Available from: https://osha.europa.eu/en/publications/musculoskeletal-disorders-among-children-and-young-people-prevalence-risk-factors-preventive-measures
9. Ayudea A, Engka A, Sumampouw OJ, Kaunang W. Postur Kerja dan Keluhan Muskuloskeletal pada Nelayan di Desa Borgo Satu Kecamatan Belang. J KESMAS. 2022;11(4):44–51.
10. WHO. Musculoskeletal Conditions. World Health Organization. 2019 [Internet]. Available from: https://www.who.int/news-room/fact-sheets/detail/musculoskeletal-conditions.
11. Elma Ö, Yilmaz ST, Deliens T, Coppieters I, Clarys P, Nijs J, et al. Do nutritional factors interact with chronic musculoskeletal pain? A systematic review. J Clin Med. 2020;9(3):1–23.
12. Pasmans K, Meex RCR, van Loon LJC, Blaak EE. Nutritional strategies to attenuate postprandial glycemic response. Obes Rev. 2022;23(9):1–11.
13. Twarda‐clapa A, Olczak A, Białkowska AM, Koziołkiewicz M. Advanced Glycation End‐Products (AGEs): Formation, Chemistry, Classification, Receptors, and Diseases Related to AGEs. Cells. 2022;11(8).
14. Assavarittirong C, Samborski W, Grygiel-Górniak B. Oxidative Stress in Fibromyalgia: From Pathology to Treatment. Oxid Med Cell Longev. 2022;2022.
15. Wang Y, Cheng H, Wang T, Zhang K, Zhang Y, Kang X. Oxidative stress in intervertebral disc degeneration: Molecular mechanisms, pathogenesis and treatment. Cell Prolif. 2023;56(9):1–20.
16. Juanola-Falgarona M, Salas-Salvadó J, Ibarrola-Jurado N, Rabassa-Soler A, Díaz-López A, Guasch-Ferré M, et al. Effect of the glycemic index of the diet on weight loss, modulation of satiety, inflammation, and other metabolic risk factors: A randomized controlled trial. Am J Clin Nutr. 2014;100(1):27–35.
17. Papakonstantinou E, Oikonomou C, Nychas G, Dimitriadis GD. Effects of Diet, Lifestyle, Chrononutrition and Alternative Dietary Interventions on Postprandial Glycemia and Insulin Resistance. Nutrients. 2022;14(4).
18. Strath LJ, Sorge RE. Racial Differences in Pain, Nutrition, and Oxidative Stress. Pain Ther [Internet]. 2022;11(1):37–56. Available from: https://doi.org/10.1007/s40122-022-00359-z
19. Sindi E, Nurizki F, Indah E, Nur Y. Gambaran Indeks Glikemik Dan Beban Glikemik Bahan Makanan Pada Penderita Diabetes Melitus Tipe II. 2024;3(2):52–6.
20. Bin Arif A, Budiyanto A, Hoerudin Balai Besar Penelitian dan Pengembangan Pascapanen Pertanian Jalan Tentara Pelajar No dan. Glicemic Index of Foods and Its Affecting Factors. J Litbang Pert. 2013;32(2):91–9.
21. González P, Lozano P, Ros G, Solano F. Hyperglycemia and Oxidative Stress: An Integral, Updated and Critical Overview of Their Metabolic Interconnections. Int J Mol Sci. 2023;24(11).
22. Jiang J, Zhao C, Han T, Shan H, Cui G, Li S, et al. Advanced Glycation End Products, Bone Health, and Diabetes Mellitus. Exp Clin Endocrinol Diabetes. 2022;130(10):671–7.
23. Calcaterra V, Rossi V, Tagi VM, Baldassarre P, Grazi R, Taranto S, et al. Food Intake and Sleep Disorders in Children and Adolescents with Obesity. Nutrients. 2023;15(22):1–14.
24. Poulsen MW, Hedegaard R V., Andersen JM, de Courten B, Bügel S, Nielsen J, et al. Advanced glycation endproducts in food and their effects on health. Food Chem Toxicol [Internet]. 2013;60:10–37. Available from: http://dx.doi.org/10.1016/j.fct.2013.06.052
25. Prado CM, Landi F, Chew STH, Atherton PJ, Molinger J, Ruck T, et al. Advances in muscle health and nutrition: A toolkit for healthcare professionals. Clin Nutr [Internet]. 2022;41(10):2244–63. Available from: https://doi.org/10.1016/j.clnu.2022.07.041
26. Gill V, Kumar V, Singh K, Kumar A, Kim JJ. Advanced glycation end products (AGEs) may be a striking link between modern diet and healthfile. Biomolecules. 2019;9(12):1–21.
27. Supruniuk E, Górski J, Chabowski A. Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants. 2023;12(2).
28. Papachristoforou E, Lambadiari V, Maratou E, Makrilakis K. Association of Glycemic Indices (Hyperglycemia, Glucose Variability, and Hypoglycemia) with Oxidative Stress and Diabetic Complications. J Diabetes Res. 2020;2020.
29. Hendrix J, Nijs J, Ickmans K, Godderis L. The Interplay between Oxidative Stress , Exercise , and Pain in Health and Disease : Potential Role of Autonomic Regulation and Epigenetic Mechanisms. :1–25.
30. Cirillo M, Argento FR, Becatti M, Fiorillo C, Coccia ME, Fatini C. Mediterranean Diet and Oxidative Stress: A Relationship with Pain Perception in Endometriosis. Int J Mol Sci. 2023;24(19).
31. Wronka M, Krzemińska J, Młynarska E, Rysz J, Franczyk B. The Influence of Lifestyle and Treatment on Oxidative Stress and Inflammation in Diabetes. Int J Mol Sci. 2022;23(24).
32. Maino Vieytes CA, Taha HM, Burton-Obanla AA, Douglas KG, Arthur AE. Carbohydrate Nutrition and the Risk of Cancer. Curr Nutr Rep. 2019;8(3):230–9.
33. Vlachos D, Malisova S, Lindberg FA, Karaniki G. Dietary Interventions for Optimizing Postprandial Hypearglycemia in Patients with T2 Diabetes : A Review. Nutrients. 2020;12(1561):1–13.
34. Wolever TMS, Gibbs AL, Chiasson JL, Connelly PW, Josse RG, Leiter LA, et al. Altering source or amount of dietary carbohydrate has acute and chronic effects on postprandial glucose and triglycerides in type 2 diabetes: Canadian trial of Carbohydrates in Diabetes (CCD). Nutr Metab Cardiovasc Dis [Internet]. 2013;23(3):227–34. Available from: http://dx.doi.org/10.1016/j.numecd.2011.12.011
35. Poznyak A, Grechko A V., Poggio P, Myasoedova VA, Alfieri V, Orekhov AN. The diabetes mellitus–atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation. Int J Mol Sci. 2020;21(5):1–13.
36. Vlassara H, Cai W, Tripp E, Pyzik R, Yee K, Goldberg L, et al. Oral AGE restriction ameliorates insulin resistance in obese individuals with the metabolic syndrome: a randomised controlled trial. Diabetologia [Internet]. 2016;59(10):2181–92. Available from: http://dx.doi.org/10.1007/s00125-016-4053-x
37. Anderson C, Milne GL, Park YMM, Sandler DP, Nichols HB. Dietary glycemic index and glycemic load are positively associated with oxidative stress among premenopausal women. J Nutr. 2018;148(1):125–30.
38. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev. 2017;2017.
39. Zhang Z, Zhao L, Zhou X, Meng X, Zhou X. Role of inflammation, immunity, and oxidative stress in hypertension: New insights and potential therapeutic targets. Front Immunol. 2023;13(January):1–18.
40. Damiano S, Muscariello E, La Rosa G, Di Maro M, Mondola P, Santillo M. Dual role of reactive oxygen species in muscle function: Can antioxidant dietary supplements counteract age-related sarcopenia? Int J Mol Sci. 2019;20(15).
41. Cepas V, Collino M, Mayo JC, Sainz RM. Redox signaling and advanced glycation endproducts (AGEs) in diet-related diseases. Antioxidants. 2020;9(2):1–20.
42. Rosenberger DC, Blechschmidt V, Timmerman H, Wolff A, Treede RD. Challenges of neuropathic pain: focus on diabetic neuropathy [Internet]. Vol. 127, Journal of Neural Transmission. Springer Vienna; 2020. 589–624 p. Available from: https://doi.org/10.1007/s00702-020-02145-7
43. Howland N, Lopez M, Zhang AY. Pain and Hand Function. Hand Clin [Internet]. 2016;32(1):1–9. Available from: http://dx.doi.org/10.1016/j.hcl.2015.08.002
44. Li DY, Gao SJ, Sun J, Zhang LQ, Wu JY, Song FH, et al. Notch signaling activation contributes to paclitaxel-induced neuropathic pain via activation of A1 astrocytes. Eur J Pharmacol [Internet]. 2022;928(June):175130. Available from: https://doi.org/10.1016/j.ejphar.2022.175130
45. Zhang Y, Wang T, Wu S, Tang L, Wang J, Yang J, et al. Notch signaling pathway: a new target for neuropathic pain therapy. J Headache Pain [Internet]. 2023;24(1):1–11. Available from: https://doi.org/10.1186/s10194-023-01616-y
46. Jin GL, Hong LM, Liu HP, Yue RC, Shen ZC, Yang J, et al. Koumine modulates spinal microglial M1 polarization and the inflammatory response through the Notch-RBP-Jκ signaling pathway, ameliorating diabetic neuropathic pain in rats. Phytomedicine. 2021;90(June):1–9.